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Abstract

To find the optimal coils for stellarators, nonlinear optimization algorithms are applied in
existing coil design codes. However, none of these codes have used the information from the
second-order derivatives. In this paper, we present a modified Newton method in the recently
developed code FOCUS. The Hessian matrix is calculated with analytically derived equations.
Its inverse is approximated by a modified Cholesky factorization and applied in the iterative
scheme of a classical Newton method. Using this method, FOCUS is able to recover the W7-X
modular coils starting from a simple initial guess. Results demonstrate significant advantages
in convergence and robustness.

1 Introduction

Unlike tokamaks, stellarators rely on the external current-carrying coils to produce the rotational-
transform required for confining plasmas. As a consequence, stellarators are inherently stable and
free of disruptions, which is very attractive for future fusion reactors. However, due to the three-
dimensional nature, the coils in stellarators are much more complicated.

There are two main approaches to designing stellarator coils. The first one is to approximate
the external coils with a surface current potential on a predefined toroidal “winding surface” sur-
rounding the plasma [?, ?, ?]. The mathemetical problem reduces to a least squares minimization
problem, and can be solved linearly. This method is fast and elegant, but it lacks direct control
on the final coil shapes. To incorporate engineering constraints, other approaches that optimize
the geometry of the coil filaments directly were developed [?, ?, ?]. These employ nonlinear opti-
mization algorithms to find the coil shapes that satisfy both physics requirements and engineering
constraints, as encapsulated by a “cost-function”. The minimization algorithms used in these codes
require either only function values, such as the Brent’s method [?], or function values together
with numerically approximated gradients, like the Levenberg-Marquardt method [?]. Although
Hessian-based minimization algorithms are generally more powerful, none of these codes, as yet,
have employed any Hessian-based minimization algorithms. Furthermore, some cost functions have
no analytical expressions, for example, the minimum separation between coils is just a singular
value. [this is an interesting comment, but it should come later]

Recently, a new coil design algorithm, named FOCUS, has been implemented [?]. FOCUS de-
scribe the coil filaments as arbitrary, closed one-dimensional curves embedded in three-dimensional
space. The “physics” and “engineering” cost functions were carefully chosen to be both rele-
vant, and differentiable. The previous version of FOCUS calculated only the first derivatives and
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gradient-based minimization algorithms were employed. Newton’s method is potentially a much
faster algorithm, and it has been applied in many codes in the field of plasma physics [?, ?, ?, ?]. In
this paper, we will introduce a modified Newton method using the analytically calculated Hessian
matrix (comprised of the second derivatives) in FOCUS.

Section II gives a overview of the FOCUS code, and details of the modified Newton method
are presented in Section III. In Section IV, an example of optimizing the modular coils of the
W7-X stellarator from a simple circular coils initialization is illustrated, and section V gives some
conclusions and comments.

2 Overview of the FOCUS code

Coils are approximated by single, closed filaments embedded in three-dimensional space. FOCUS
presently uses Fourier series to represent coils in the Cartesian coordinates,

x(t) = Xc,0 +
NF∑
n=1

[Xc,n cos(nt) +Xs,n sin(nt)] , (1)

where the parameter t varys between [0, 2π], and similarly for y(t) and z(t). Each coil is fully
determined by 3 × (2NF + 1) Fourier coefficients, which constitute the independent degrees-of-
freedom. The current through each coil can also be considered as a free-parameter.

All the coil parameters are allowed to vary to minimize a so-called “target function” or “cost
function” consisting of multiple objective functions

χ2(X) =
∑
j

wj

(
fj(X)− fj,o

fj,o

)2

, (2)

where X describes the degrees-of-freedom in the coil geometry and currents, fj(X) is the jth

objective function, and fj,o denotes the desired “target” value, and wj is a user-prescribed weight.
Several objective functions have been implemented in FOCUS, subject to physical requirements
and engineering constraints.

The most important requirement of the external coils is that they produce the desired magnetic
field. The mathematical theory of vacuum fields show that the magnetic field inside a certain
domain is uniquely determined (up to a scalar multiple) by the normal magnetic field at the domain
boundary. The first objective functional is thus

fB(X) ≡
∫
S

1
2

(BV · n− TBn)2 ds. (3)

Here, TBn is the target normal field distribution on an arbitrary predefined boundary S, i.e TBn
is the magnetic field produced by the plasma, and BV is the total magnetic field generated by
external coils. Normally, the smaller fB is, the better the coils produce the required field (but
so-called resonant field distributions can be particularly problematic, even though they are small).

If there are no plasma currents and the plasma boundary is required to be a flux surfaces, then
TBn is zero. As a consequence, trivial solutions, like when Ii → 0 ∀i, fB → 0, exist. An objective
function is defined as

fΨ(X) ≡ 1
2π

∫ 2π

0

1
2

(
Ψζ − Ψo

Ψo

)2

dζ, (4)
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to produce the target toroidal flux and avoid such trivial solutions.
If only the magnetic field is considered, coils would prefer to be further away from the plasma to

reduce the ripple, or to form wiggles to better match the plasma shape. By constructing a penalty
on the coil length, we can prevent coils from getting arbitrarily long and forming unrealistic wiggles.
The length penalty can be realized either by an exponential form

fL(X) =
1
NC

NC∑
i=1

eLi

eLi,o
, (5)

or by a quadratic form

fL(X) =
1
NC

NC∑
i=1

1
2

(Li − Li, o)2

L2
i,o

. (6)

In Eq.(5) and Eq.(6), NC is the total number of coils and Li(X) is the length of i-th coil, while Li,o
is a user-specified normalization or the target length.

The above objective functions are easily differentiable functions of the coil geometry, and pre-
viously FOCUS used the steepest descent method (and a nonlinear conjugate gradient method [?])
to optimize the coil parameters.

3 Modified Newton method for coil optimization

3.1 Analytically calculated Hessian matrix

The second derivatives of the target function with respect to the coil parameters can also be
calculated analytically, albeit with a little extra work. For instance, an arbitrary term, ∂2fB/∂X

2
m,

is calculated as,

∂2fB
∂X2

m

=
∫
S

(
∂BV

∂Xm
· n
)2

+ (BV · n− TBn)
(
∂2BV

∂X2
m

· n
)
, (7)

where Xm is the m-th variable in the vector of degrees of freedom X. The magnetic field BV

produced by external coils is computed by the Biot-Savart law,

BV =
µ0

4π

NC∑
i=1

Ii

∫
Ci

dli × r
r3

. (8)

The displacement vector r = x0 − xi is from the evaluation point to the source point on the i-th
coil and dli = ẋidt. BV is a functional of the coil geometries x(X). To calculate the derivatives of
BV with respect to coil Fourier coefficients, functional derivatives can be applied. For illustration,
the first and second derivatives of BV with respect to Xm are

∂BV

∂Xm
=
∫ 2π

0

δBV

δx

∂x

∂Xm
+
δBV

δy

∂y

∂Xm
+
δBV

δz

∂z

∂Xm
dt , (9)

∂2BV

∂X2
m

=
∫ 2π

0

δ2BV

δx2

(
∂x

∂Xm

)2

+
δ2BV

δxδy

∂y

∂Xm

∂x

∂Xm
+
δ2BV

δxδz

∂z

∂Xm

∂x

∂Xm
dt , (10)
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where δBV /δx and δ2BV /δx
2 are the first and second functional derivatives, respectively. For a

small change on the geometry of the i-th coil, written as δxi, the first and second variation of the
vacuum magnetic field are

δBV =
µ0

4π
Ii

∫ 2π

0

[
3r · x′i
r5

r× δxi +
2
r3
δxi × x′i +

3r · δxi
r5

x′i × r
]

dt, (11)

δ2BV =
µ0

4π
Ii

∫ 2π

0

3
[
r · δ2x + 5(r · δx)2 − δx · δx

]
r5

(x′ × r)

+
3 [r · δx′ + 5(r · x′)(r · δx)− δx · x′]

r5
(r× δx)

+
9r · δx
r5

(δx× x′) +
3r · δx
r5

(δx′ × r)

+
3r · x
r5

(r× δ2x) +
2
r3

(δ2x× x′) +
2
r3

(δx× δx′).

(12)

In the Cartesian coordinates, the functional derivatives are now written as,

δBxV
δx

=
3∆x (∆zy′ −∆yz′)

r5
, (13)

δ2BxV
δx2

=
3
(
5∆x2 − r2

)
(∆zy′ −∆yz′)
r7

, (14)

where r = (∆x,∆y,∆z), y′ = dy/dt and z′ = dz/dt. Only the x components are listed here and
other components can be calculated likewise.

Inserting Eq.(8), Eq.(9), Eq.(10), Eq.(13) and Eq.(14) into Eq.(7), we can calculate ∂2fB/∂X
2
m

fast and accurately. Similarly, the whole Hessian matrix, H, can be computed.

3.2 Modified Newton method

The iterative scheme of a classical Newton method is [?]

Xk+1 = Xk −H−1
k · gk . (15)

Here, H−1
k is the inverse of Hessian and gk is the gradient at the k − th iteration.

As yet, it is not guaranteed that the Hessian has a well-defined inverse. There are two problems
that may be encountered. The first is purely numerical. The representation for the coils is not
unique in the sense that the Fourier harmonics of the coils can change, but with no change in the
coil geometry. This amounts to a tangential, reparameterization of the coils. The second problem
is “physical”, or geometrical. The physical solution may not be unique. Consider for example
designing a set of coils for an axisymmetric tokamak. Because of the rotational symmetry, the
geometry of the coils can be rotated without affecting the magnitude of the objective functions.

Many techniques have been proposed to deal with such problems. Among them, one of the most
practical methods is a modified Cholesky factorization [?]. For an arbitrary real symmetric matrix,
like the Hessian matrix H in our problem, it would perform a standard Cholesky decomposition
on the new matrix H∗ = H + E, in which E is a carefully chosen diagonal matrix such that H∗ is
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positive definite and well-conditioned (E = 0 if H is already positive definite). Now the inverse of
the Hessian is approximated with (H∗)−1,

(H∗)−1 = PT (L−1)T L−1P . (16)

L is the lower triangular matrix from the standard Cholesky factorization and P denotes the
permutation matrix.

To ensure a descent direction, a step length αk along the new search direction pk = − (H∗)−1gk
is selected to satisfy the strong Wolfe condition [?, ?],

χ2(Xk+1) ≤ χ2(Xk) + c1αkgTk pk , (17)

|gTk+1pk| ≤ c2|gTk pk| , (18)

where parameters c1 and c2 satisfy 0 < c1 < c2 < 1. Finally, the actual iterative scheme applied in
the code is

Xk+1 = Xk − αk(H∗k)−1gk , (19)

and we call this the modified Newton method in FOCUS.

4 Application for designing W7-X modular coils

For demonstration, we use the modified Newton method to recover the design the W7-X [?] modular
coils. The W7-X “standard configuration” [?] was optimized to have a rotational-transform ( ι-)
equal to 1.0 at the last closed flux surface (LCFS), with a 5/5 island chain outside the LCFS. This
configuration is achived by using 50 modular (nonplanar) coils arranged in five field periods. In
each period, the modular coils are stellarator symmetric [?], and consequently there are only five
unique modular coils. The modular coils were obtained from an extension of the NESCOIL code
[?], which systematically adjusted the Fourier coefficients of the winding surface to satisfy multiple
criteria [?].

To use FOCUS, a boundary surface, S, that is close to the LCFS, together with TBn on S as
calculated from the actual coils, is provided. Note that these “come as a pair”, so to speak. If
a slightly different boundary is provided, a slightly different TBn would result, but the magnetic
field inside the boundaries will be identical. The “coils” used in this calculation are the filamentary
models of the actually built coils, represented in Fourier series with NF = 8. The modified Newton
method in FOCUS requires a suitable initial guess for the coil geometry, and this is obtained by
placing 50 circular coils at equal toroidal intervals surrounding the boundary. The radius of the
initial coils is 1.25m. The shape of the selected boundary, S, and the initial coils are shown in
Fig.1. The differences between the initial normal field Bn, which is produced the circular coils, and
the target distribution TBn are illustrated on the boundary. The maximum value of (Bn − TBn) is
1.30T.

Besides the constraint on the normal magnetic field, a length penalty in the quadratic form,
as decribed in Eq.(6), is also applied. The target length of each coil, Li,o, is set to the length of
the actual coil that is at the closest toroidal angle. Weights for fB and fL are chosen to satisfy
wB = 200/fB0 and wL = 0.1/fL0, where fB0 and fL0 are the initial values of fB and fL respectively.
Not only do Newton methods require an initial guess, they require a good initial guess; if a bad
initial guess is provided, Newton methods can be very unstable. The mathematical problem of
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Figure 1: The input plasma boundary and initial coils for FOCUS. The colors on the boundary
indicate the magnitude of (Bn−TBn). The maximum value is about 1.30 T. The single-filamentary
coils are plotted with finite width for better viewing, same hereafter.

coil design is very nonlinear, and this fact combined with the very free coil representation used by
FOCUS suggests that it is advisable to begin with a more stable method. So, for this calculation
the optimization starts with 50 iterations of the nonlinear conjugate gradient method (CG). After
a closer estimate is obtained, 50 iterations of the modified Newton method (MN) are employed.

Fig.2 shows the evolutions of χ2, fB and fL with respect to the accumulated iterations. In the
first 10 iterations, the objective functions are decreased rapidly by CG. Then the rate of descent
slows down until the beginning of MN. Applying the MN method makes the objective functions keep
decreasing again, at a considerable rate. Quantitatively, fB is reduced from 1.71×101 to 7.02×10−3

by CG, and finally to 2.24×10−6 after MN. Similarly, fL is 2.91×10−3 at the beginning, 9.15×10−5

after CG and 1.13 × 10−8 at the end of MN. It should be noted that the evolution curves are not
completely flat at the end of MN, which means the objective functions would be reduced more if
the modified Newton method was continued. However, the objective functions are already small
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enough and there wouldn’t be significant reductions. (In reality, the coils have finite thickness, and
this places a limit on the how accurately it is required to design filamentary coils.)

Figure 2: Convergence curves of the objective functions over iterations. The first 50 iterations are
using the CG method and the latter is MN.

Fig.3 illustrates the geometries of the optimized coils resulting from the FOCUS calculation and
the actual W7-X coils. The two coils sets almost perfectly coincide with each other.

In addition to computing the magnitude of the objective functionals and their gradients with
respect to the coil geometry, there are many criteria that can be used for evaluating the quality
of the magnetic field produced by the “FOCUS coils”. We compare the Poincaré plots of the flux
surfaces and the rotational-transform profiles. At the bean-shaped cross-section, 64 points that
are linearly interpolated between (Rl, Zl) = (5.95, 0.00) and (Ru, Zu) = (6.30, 0.00) are chosen as
starting points for fieldline tracing calculations. The intersection points are computed by following
the fieldlines starting from the starting points with 2000 periods/iterations. As shown in Fig.4,
inside the boundary, the flux surfaces produced by the two coils sets are almost identical. A
quantitative comparison on the rotational-transform profiles is carried out, as shown in Fig.5. The
average relative deviation of the rotational-transforms on the flux surfaces inside the boundary
is 0.028% , and the maximum deviation is 0.071%. The rotational-transform profiles outside the

7



Figure 3: Comparison of FOCUS optimized coils (blue) and the actual coils (green). Only half
period is plotted here. The colors on the boundary indicate the distribution of (Bn − TBn). The
maximum value of normal field error is now reduced to 1.03× 10−3T.

boundary are also coincident, with a relatively high precision, and the 5/5 islands are reproduced.

5 Summary and discussions

In this paper, a modified Newton method has been proposed for designing stellarator coils. To
exploit the power of Newton methods, we have overcome the following difficulties: (i) By employing
an explicit coil representation and constructing differentiable cost functions, the FOCUS code can
compute the first and second derivatives analytically. (ii) A modified Cholesky factorization is
applied to quickly invert the Hessian matrix, which is not necessarily invertible. (iii) Before using
the modified Newton method, we have available the previously implemented steepest descent and/or
the conjugate gradient method to obtain a sufficient initial guess. The modified Newton method
has been applied to design modular coils for W7-X. We started from an arbitrary initial guess of
circular coils and only provided the plasma boundary, the target Bn on it and the target lengths. By
using a combination of CG and MN methods, FOCUS successfully and rapidly recovered the actual
coils with remarkable precisions. Moreover, it shows that the modified Newton method is of great
robustness, considering that initial circular coils are relatively “bad” guesses and the informations
needed are poor. Neither any winding surfaces nor other engineering constraints except the length
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penalty on the coils were given.
More constraints, such as the spectral condensation on the Fourier coefficients [?], could be

implemented to avoid singularities in the Hessian matrix so that the exact inverse could be solved
by a direct algebra technique. Global minimization algorithms [?, ?, ?] could also be used to find
the global minimum.
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Figure 4: Poincaré plots of the flux surfaces at the bean-shaped cross-section. The data from the
magnetic field generated by the FOCUS optimized coils (FOCUS coils) is in red while the actual
coils in blue. The solid line (black) is the input plasma boundary. In the zoomed subfigure, the
upper half is the flux surfaces from the FOCUS coils and the lower half is from the actual coils.
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Figure 5: Rotational-transforms on the flux surfaces of the vacuum field produced by the FOCUS
coils and the actual coils. The abscissa is the distance from the magnetic axis.
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